p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.47C22, C23.434C24, C24.317C23, C22.2242+ 1+4, (C22×C4)⋊28D4, (C2×D4).211D4, C23.45(C2×D4), C24⋊3C4⋊18C2, (C23×C4)⋊11C22, (C2×C42)⋊25C22, C2.65(D4⋊5D4), C23.Q8⋊26C2, C23.7Q8⋊62C2, C23.150(C4○D4), C23.23D4⋊52C2, C23.34D4⋊35C2, C23.10D4⋊38C2, C2.11(C23⋊3D4), C22.76(C4⋊D4), (C22×C4).535C23, C22.285(C22×D4), C24.C22⋊76C2, C2.C42⋊26C22, (C22×D4).160C22, C2.57(C22.19C24), C2.45(C22.45C24), (C2×C4×D4)⋊41C2, (C2×C4⋊C4)⋊21C22, (C2×C4).350(C2×D4), C2.29(C2×C4⋊D4), (C2×C22≀C2).11C2, (C2×C22⋊C4)⋊20C22, (C22×C22⋊C4)⋊23C2, C22.311(C2×C4○D4), (C2×C22.D4)⋊19C2, SmallGroup(128,1266)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.434C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=ca=ac, ab=ba, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 884 in 400 conjugacy classes, 112 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C22≀C2, C22.D4, C23×C4, C22×D4, C22×D4, C25, C24⋊3C4, C23.7Q8, C23.34D4, C23.23D4, C24.C22, C23.10D4, C23.Q8, C22×C22⋊C4, C2×C4×D4, C2×C22≀C2, C2×C22.D4, C23.434C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4⋊D4, C22.19C24, C23⋊3D4, D4⋊5D4, C22.45C24, C23.434C24
(1 28)(2 25)(3 26)(4 27)(5 29)(6 30)(7 31)(8 32)(9 14)(10 15)(11 16)(12 13)(17 24)(18 21)(19 22)(20 23)
(1 19)(2 20)(3 17)(4 18)(5 12)(6 9)(7 10)(8 11)(13 29)(14 30)(15 31)(16 32)(21 27)(22 28)(23 25)(24 26)
(1 26)(2 27)(3 28)(4 25)(5 31)(6 32)(7 29)(8 30)(9 16)(10 13)(11 14)(12 15)(17 22)(18 23)(19 24)(20 21)
(1 5)(2 30)(3 7)(4 32)(6 25)(8 27)(9 23)(10 17)(11 21)(12 19)(13 22)(14 20)(15 24)(16 18)(26 31)(28 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 19)(2 21)(3 17)(4 23)(6 32)(8 30)(9 16)(11 14)(18 25)(20 27)(22 28)(24 26)
(1 24)(2 21)(3 22)(4 23)(5 10)(6 11)(7 12)(8 9)(13 31)(14 32)(15 29)(16 30)(17 28)(18 25)(19 26)(20 27)
G:=sub<Sym(32)| (1,28)(2,25)(3,26)(4,27)(5,29)(6,30)(7,31)(8,32)(9,14)(10,15)(11,16)(12,13)(17,24)(18,21)(19,22)(20,23), (1,19)(2,20)(3,17)(4,18)(5,12)(6,9)(7,10)(8,11)(13,29)(14,30)(15,31)(16,32)(21,27)(22,28)(23,25)(24,26), (1,26)(2,27)(3,28)(4,25)(5,31)(6,32)(7,29)(8,30)(9,16)(10,13)(11,14)(12,15)(17,22)(18,23)(19,24)(20,21), (1,5)(2,30)(3,7)(4,32)(6,25)(8,27)(9,23)(10,17)(11,21)(12,19)(13,22)(14,20)(15,24)(16,18)(26,31)(28,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19)(2,21)(3,17)(4,23)(6,32)(8,30)(9,16)(11,14)(18,25)(20,27)(22,28)(24,26), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,31)(14,32)(15,29)(16,30)(17,28)(18,25)(19,26)(20,27)>;
G:=Group( (1,28)(2,25)(3,26)(4,27)(5,29)(6,30)(7,31)(8,32)(9,14)(10,15)(11,16)(12,13)(17,24)(18,21)(19,22)(20,23), (1,19)(2,20)(3,17)(4,18)(5,12)(6,9)(7,10)(8,11)(13,29)(14,30)(15,31)(16,32)(21,27)(22,28)(23,25)(24,26), (1,26)(2,27)(3,28)(4,25)(5,31)(6,32)(7,29)(8,30)(9,16)(10,13)(11,14)(12,15)(17,22)(18,23)(19,24)(20,21), (1,5)(2,30)(3,7)(4,32)(6,25)(8,27)(9,23)(10,17)(11,21)(12,19)(13,22)(14,20)(15,24)(16,18)(26,31)(28,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,19)(2,21)(3,17)(4,23)(6,32)(8,30)(9,16)(11,14)(18,25)(20,27)(22,28)(24,26), (1,24)(2,21)(3,22)(4,23)(5,10)(6,11)(7,12)(8,9)(13,31)(14,32)(15,29)(16,30)(17,28)(18,25)(19,26)(20,27) );
G=PermutationGroup([[(1,28),(2,25),(3,26),(4,27),(5,29),(6,30),(7,31),(8,32),(9,14),(10,15),(11,16),(12,13),(17,24),(18,21),(19,22),(20,23)], [(1,19),(2,20),(3,17),(4,18),(5,12),(6,9),(7,10),(8,11),(13,29),(14,30),(15,31),(16,32),(21,27),(22,28),(23,25),(24,26)], [(1,26),(2,27),(3,28),(4,25),(5,31),(6,32),(7,29),(8,30),(9,16),(10,13),(11,14),(12,15),(17,22),(18,23),(19,24),(20,21)], [(1,5),(2,30),(3,7),(4,32),(6,25),(8,27),(9,23),(10,17),(11,21),(12,19),(13,22),(14,20),(15,24),(16,18),(26,31),(28,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,19),(2,21),(3,17),(4,23),(6,32),(8,30),(9,16),(11,14),(18,25),(20,27),(22,28),(24,26)], [(1,24),(2,21),(3,22),(4,23),(5,10),(6,11),(7,12),(8,9),(13,31),(14,32),(15,29),(16,30),(17,28),(18,25),(19,26),(20,27)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2Q | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 4Q | 4R | 4S | 4T |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.434C24 | C24⋊3C4 | C23.7Q8 | C23.34D4 | C23.23D4 | C24.C22 | C23.10D4 | C23.Q8 | C22×C22⋊C4 | C2×C4×D4 | C2×C22≀C2 | C2×C22.D4 | C22×C4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 12 | 2 |
Matrix representation of C23.434C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 2 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 3 |
0 | 0 | 0 | 0 | 1 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,2,0,0,0,0,1,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,1,1,0,0,0,0,3,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C23.434C24 in GAP, Magma, Sage, TeX
C_2^3._{434}C_2^4
% in TeX
G:=Group("C2^3.434C2^4");
// GroupNames label
G:=SmallGroup(128,1266);
// by ID
G=gap.SmallGroup(128,1266);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,568,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=c*a=a*c,a*b=b*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations